泵閥是鉆井泵的關鍵部件和易損件之一,其設計好壞直接影響到泵的工作性能和使用壽命。一方面,要提高泵閥接觸表面耐沖蝕的能力,就必然要增加接觸面的表面硬度,而硬度過高又會削弱耐沖擊的性能。另一方面,要提高材料抗沖擊載荷的能力,就必須保證材料有較高的韌性,相應的硬度又會受影響。此外,盡管泵閥的綜合性能好,但在不同工況條件下,各種性能并不會同時發揮作用,且泵閥的加工成本也會相應提高。因此,研究泵閥的失效機理對泵閥的設計制造具有重要的指導作用,一般而言,造成鉆井泵閥失效的原因有沖擊疲勞破壞和沖蝕磨礪磨損(液力磨礪性磨損)兩種。然而通過對礦場報廢的鉆井泵閥宏觀和微觀形貌分析表明,沖擊疲勞破壞是泵閥失效的主要機理,因此在泵閥設計時,要重點考慮泵閥材料的抗沖擊疲勞性能及由零件的局部應力狀態確定的疲勞強度。本文依據泵閥在關閉階段的簡化模型和泵閥沖擊過程的有限元動力學模型,重點研究泵閥沖擊時,閥盤與閥座接觸面上產生應力集中部位的受力形式及程度,并通過泵閥疲勞壽命曲線對最大應力區進行疲勞校核,從而估算泵閥的使用壽命。根據疲勞壽命曲線,以泵閥最弱區為對象,通過改進泵閥的結構以降低峰值應力,為高效地利用泵閥提出可行性方案。
1、泵閥應力分析
隨著活塞的往復運動,閥盤對閥座產生間歇沖擊,泵閥承受沖擊載荷。接觸面上應力由閉合瞬間到產生最大應力再到泵閥開啟時刻,如此循環沖擊,可以認定泵閥承受脈動循環應力。在泵閥關閉階段的簡化模型中,假定在很小的滯后高度內,閥盤受力不變,勻加速向下運動,直至關閉。根據此模型求出泵閥關閉時刻閥盤的速度和加速度。文獻中以油田大量使用的 7# 閥為例,選取錐角為 45°(錐角為錐閥母線與軸線之間的夾角),設定閥開啟時曲柄轉角φ=25°,沖次為 120 次/min,泵壓為 15MPa,在曲柄轉角φ=25°~180°之間,對鉆井泵閥阿道爾夫精確微分方程進行數值仿真,得到閥盤的滯后高度為 0.0056m,在此處的速度為﹣0.4067m/s2。利用簡化模型,可求出泵閥關閉時刻閥盤的速度為﹣19.3676m/s,加速度為﹣33476.65m/s2。
以簡化模型得到的關閉時刻閥盤的速度和加速度作為運動邊界條件,利用 ANSYS/LS—DYNA 軟件構建泵閥的三維模型,模擬閥盤沖擊閥座的過程。按泵閥的實際尺寸建立泵閥整體模型,省略密封圈,根據鉆并泵閥實際工況設置材料屬性及幾何約束條件,采用 8 結點六面體單元進行網格化劃分,建立模型,剖視圖如圖 l 所示。
圖 1 泵閥三維模型剖視圖
應用動力學理論分析處理碰撞、滑動接觸界面問題,得到錐角 45 °、7 #閥閥盤在閉合階段產生最大局部應力時的應力分布圖,如圖 2。
圖 2 閥盤應力分布圖
由圖 2 得到閥盤在沖擊閥座的過程中,產生的最大局部集中應力為 0.955×109Pa,從而可知泵閥錐面下端應力集中區域承受的脈動循環載荷 0.955×109Pa,周期為 0.5s(泵閥的沖次為 120 次/min),如圖 3。
圖 3 錐面下端應力集中區域受力形式
在脈動循環應力作用下,錐面下端應力集中區域更易形成疲勞裂紋,使泵閥的疲勞強度顯著降低,這一點與閥座失效的宏觀形貌中錐面下部發生嚴重塑性變形的現象完全吻合。可見,泵閥沖擊時應力集中引起的沖擊疲勞是泵閥失效的主要原因。
本文采用三維幾何實體模型代替文獻中的二維平面模型,將各種類型動力載荷施加到結構模型的特定受載部分,模擬真實碰撞過程。利用 ANSY/LS—DYNA 軟件有限元顯式非線性動力分析求解程序,計算得到更加精確的應力解,并且對應力分布的方位有更加直觀的認識。
鉆井泵閥的制造材料廣泛采用40Cr鋼,40Cr鋼屬低合金中碳結構鋼,經調質處理后,具有可塑性好、疲勞強度高、缺口敏感性低、低溫沖擊韌性優良等特性。力學性能見表1。
1080 | 950 | 18.0 | 58.0 |